Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(15): 8650-8663, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564678

RESUMO

Plant growth-promoting rhizobacteria have been shown to enhance plant tolerance to drought stress through various mechanisms. However, there is limited research on improving drought resistance in alfalfa by genetically modifying PGPR to produce increased levels of cytokinins. Herein, we employed synthetic biology approaches to engineer two novel strains of Sinorhizobium meliloti capable of overproducing trans-Zeatin and investigated their potential in enhancing drought tolerance in alfalfa. Our results demonstrate that alfalfa plants inoculated with these engineered S. meliloti strains exhibited reduced wilting and yellowing while maintaining higher relative water content under drought conditions. The engineered S. meliloti-induced tZ activated the activity of antioxidant enzymes and the accumulation of osmolytes. Additionally, the increased endogenous tZ content in plants alleviated the impact of drought stress on the alfalfa photosynthetic rate. However, under nondrought conditions, inoculation with the engineered S. meliloti strains had no significant effect on alfalfa biomass and nodule formation.


Assuntos
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Zeatina , Medicago sativa , Secas , Antioxidantes
2.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475040

RESUMO

Livestock's live body dimensions are a pivotal indicator of economic output. Manual measurement is labor-intensive and time-consuming, often eliciting stress responses in the livestock. With the advancement of computer technology, the techniques for livestock live body dimension measurement have progressed rapidly, yielding significant research achievements. This paper presents a comprehensive review of the recent advancements in livestock live body dimension measurement, emphasizing the crucial role of computer-vision-based sensors. The discussion covers three main aspects: sensing data acquisition, sensing data processing, and sensing data analysis. The common techniques and measurement procedures in, and the current research status of, live body dimension measurement are introduced, along with a comparative analysis of their respective merits and drawbacks. Livestock data acquisition is the initial phase of live body dimension measurement, where sensors are employed as data collection equipment to obtain information conducive to precise measurements. Subsequently, the acquired data undergo processing, leveraging techniques such as 3D vision technology, computer graphics, image processing, and deep learning to calculate the measurements accurately. Lastly, this paper addresses the existing challenges within the domain of livestock live body dimension measurement in the livestock industry, highlighting the potential contributions of computer-vision-based sensors. Moreover, it predicts the potential development trends in the realm of high-throughput live body dimension measurement techniques for livestock.


Assuntos
Computadores , Gado , Animais , Processamento de Imagem Assistida por Computador , Inquéritos e Questionários , Indústrias
3.
Adv Sci (Weinh) ; 11(6): e2307271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072640

RESUMO

Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy. In a series of in vitro experiments, glucagon inhibited cell migration and tube formation in both endothelial and tumor cells. In vivo studies demonstrated decreased tumor blood vessels and fewer pseudo-vessels in mice treated with glucagon. The combination of glucagon and chemotherapy exhibited enhanced tumor inhibition. Mechanistic studies demonstrated that glucagon increased the permeability of blood vessels, leading to a pronounced disruption of vessel morphology. Signaling pathway analysis identified a VEGF/VEGFR-dependent mechanism whereby glucagon attenuated angiogenesis through its receptor. Clinical data analysis revealed a positive correlation between elevated glucagon expression and chemotherapy response. This is the first study to reveal a role for glucagon in inhibiting angiogenesis and vascular mimicry. Additionally, the delivery of glucagon-encapsulated PEGylated liposomes to tumor-bearing mice amplified the inhibition of angiogenesis and vascular mimicry, consequently reinforcing chemotherapy efficacy. Collectively, the findings demonstrate the role of glucagon in inhibiting tumor vessel network and suggest the potential utility of glucagon as a promising predictive marker for patients with CRC receiving chemotherapy.


Assuntos
Neoplasias Colorretais , Glucagon , Humanos , Animais , Camundongos , Glucagon/farmacologia , Glucagon/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Colorretais/patologia , Transdução de Sinais , Linhagem Celular Tumoral
4.
Clin Exp Med ; 23(8): 4597-4608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914966

RESUMO

Inflammation and nutrition related proteins participate in the development of acute myeloid leukemia (AML). It has been reported that the albumin-to-fibrinogen ratio (AFR) could serve as a prognostic indicator in patients with malignancy, but the precise relevance of AML is unclear. This study aimed to evaluate the effect of AFR on survival prognosis in patients with AML. We analyzed 227 patients newly diagnosed with non-M3 AML. AFR was calculated as albumin divided by fibrinogen. Based on the cutoff point from X-tile program, patients were divided into AFR-high (38.8%) and AFR-low (61.2%) groups. AFR-low group showed a poorer complete remission rate (P < 0.001) and median time to relapse (P = 0.026), while the mortality was higher (P = 0.009) than AFR-high ones. According to the log-rank test, AFR-low group had shorter OS (P < 0.001) and DFS (P = 0.034). Multivariate analysis identified AFR, ELN risk, bone marrow transplant, and hemoglobin as independent prognostic variables associated with OS. A visualized nomogram for predicting OS was performed. The C-index (0.75), calibration plots, and decision curve analyses of new model showed better discrimination, calibration, and net benefits than the ELN risk model. The time-dependent receiver operating characteristic (ROC) curve of 1-, 2-, and 3-year also functioned well (AUC, 0.81, 0.93 and 0.90, respectively). Our study provided a comprehensive view of AFR which could be an independent prognostic indicator in AML patients. The prognostic model utilized readily available information from ordinary clinical practice to improve predictive performance, identify risks, and assist in therapeutic decision-making.


Assuntos
Fibrinogênio , Leucemia Mieloide Aguda , Humanos , Prognóstico , Albuminas/metabolismo , Nomogramas , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia
5.
Micromachines (Basel) ; 14(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38004973

RESUMO

Wearable electronics have received extensive attention in human-machine interactions, robotics, and health monitoring. The use of multifunctional sensors that are capable of measuring a variety of mechanical or environmental stimuli can provide new functionalities for wearable electronics. Advancements in material science and system integration technologies have contributed to the development of high-performance flexible multifunctional sensors. This review presents the main approaches, based on functional materials and device structures, to improve sensing parameters, including linearity, detection range, and sensitivity to various stimuli. The details of electrical, biocompatible, and mechanical properties of self-powered sensors and wearable wireless systems are systematically elaborated. Finally, the current challenges and future developmental directions are discussed to offer a guide to fabricate advanced multifunctional sensors.

6.
iScience ; 26(10): 108082, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860765

RESUMO

The hypothalamus, as a vital brain region for endocrine and metabolism regulation, undergoes functional disruption during obesity.The anti-aging effect of metformin has come into focus. However, whether it has the potential to ameliorate hypothalamic aging and dysfunction in the obese state remains unclear. In this study, obese mice were utilized to investigate the effects of metformin on the hypothalamus of obese mice. According to the results, metformin treatment resulted in improved insulin sensitivity, reduced blood glucose and lipid levels, as well as attenuation of hypothalamic aging, demonstrated by decreased SA-ß-gal staining and downregulation of senescence markers. Additionally, metformin decreased the expression of endoplasmic reticulum stress-related proteins in neurons and reduced the inflammatory response triggered by microglia activation. Further mechanistic analysis revealed that metformin inhibited the expression and activation of STING and NLRP3 in microglia. These results reveal a possible mechanism by which metformin ameliorates hypothalamic aging.

7.
Sci Rep ; 13(1): 14152, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644200

RESUMO

Obesity is a prominent risk factor for male infertility, and a high-fat diet is an important cause of obesity. Therefore, diet control can reduce body weight and regulate blood glucose and lipids, but it remains unclear whether it can improve male fertility and its mechanism. This study explores the effects of switching from a high-fat diet (HFD) to a normal diet (ND) on the fertility potential of obese male mice and its related mechanisms. In our study, male mice were separated into three groups: normal diet group (NN), continuous high-fat diet group (HH), and return to normal diet group (HN). The reproductive potential of mice was tested through cohabitation. Enzymatic methods and ELISA assays were used to measure metabolic indicators, follicle-stimulating hormone (FSH) levels and intratesticular testosterone levels. Transmission electron microscopy and immunofluorescence with biotin tracers assessed the integrity of the blood-testis barrier (BTB). Malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were inspected for the assessment of oxidative stress. The expression and localization of BTB-related proteins were detected through the immunoblot and immunofluorescence. The mice in the high-fat diet group indicated increased body weight and epididymal fat weight, elevated serum TC, HDL, LDL, and glucose, decreased serum FSH, and dramatic lipid deposition in the testicular interstitium. Analysis of fertility potential revealed that the fertility rate of female mice and the number of pups per litter in the HH group were significantly reduced. After the fat intake was controlled by switching to a normal diet, body weight and epididymal fat weight were significantly reduced, serum glucose and lipid levels were lowered, serum FSH level was elevated and the deposition of interstitial lipids in the testicles was also decreased. Most significantly, the number of offspring of male mice returning to a normal diet was significantly increased. Following further mechanistic analysis, the mice in the sustained high-fat diet group had disrupted testicular BTB integrity, elevated levels of oxidative stress, and abnormal expression of BTB-related proteins, whereas the restoration of the normal diet significantly ameliorated the above indicators in the mice. Our study confirms diet control by switching from a high-fat diet to a normal diet can effectively reduce body weight, ameliorate testicular lipotoxicity and BTB integrity in male mice, and improve fertility potential, providing an effective treatment option for obese male infertility.


Assuntos
Dieta Hiperlipídica , Infertilidade Masculina , Feminino , Masculino , Animais , Camundongos , Humanos , Dieta Hiperlipídica/efeitos adversos , Fertilidade , Infertilidade Masculina/etiologia , Glucose , Peso Corporal , Lipídeos , Hormônio Foliculoestimulante
8.
Front Endocrinol (Lausanne) ; 14: 1088249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950685

RESUMO

Introduction: Age-related decline in testosterone is associated with Leydig cell aging with impaired testosterone synthesis in aging. Obesity accelerates the age-related decline in testosterone. However, the mechanisms underlying the Leydig cell aging and the effects of obesity on Leydig cell aging remain unclear. Method: Natural aging mice and diet-induced obese mice were used to assess the process of testicular Leydig cell senescence with age or obesity. Bioinformatic analysis of the young and aged human testes was used to explore key genes related Leydig cell aging. Leydig cell-specific p38 MAPK knockout (p38LCKO) mice were used to further analyze the roles of p38 MAPK in Leydig cell aging. The levels of testosterone and steroidogenic enzymes, activity of p38 MAPK, aging status of Leydig cells, and oxidative stress and inflammation of testes or Leydig cells were detected by ELISA, immunoblotting, immunofluorescence, and senescence-associated ß-galactosidase (SA-ß-Gal) staining analysis, respectively. Result: The serum testosterone level was significantly reduced in aged mice compared with young mice. In the testis of aged mice, the reduced mRNA and protein levels of LHCGR, SRB1, StAR, CYP11A1, and CYP17A1 and the elevated oxidative stress and inflammation were observed. KEGG analysis showed that MAPK pathway was changed in aged Leydig cells, and immunoblotting displayed that p38 MAPK was activated in aged Leydig cells. The intensity of SA-ß-Gal staining on Leydig cells and the number of p21-postive Leydig cells in aged mice were more than those of young mice. Similar to aged mice, the testosterone-related indexes decreased, and the age-related indexes increased in the testicular Leydig cells of high fat diet (HFD) mice. Aged p38LCKO mice had higher levels of testosterone and steroidogenic enzymes than those of age-matched wild-type (WT) littermates, with reduced the intensity of SA-ß-Gal staining and the expression of p21 protein. Conclusion: Our study suggested that obesity was an important risk factor for Leydig cell aging. p38 MAPK was involved in Leydig cell aging induced by age and obesity. The inhibition of p38 MAPK could delay Leydig cell aging and alleviate decline in testosterone.


Assuntos
Células Intersticiais do Testículo , Testosterona , Humanos , Camundongos , Masculino , Animais , Idoso , Testículo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Envelhecimento/fisiologia , Senescência Celular , Inflamação/metabolismo
9.
Adv Clin Exp Med ; 32(8): 889-900, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36994685

RESUMO

BACKGROUND: Studies indicate a relationship between a high-fat diet (HFD) and sperm quality. However, the time-dependent adverse effects of a HFD on sperm parameters and the underlying mechanisms remain unclear. OBJECTIVES: The present study was designed to determine the effects of a HFD on sperm quality at various time points in order to assess whether a HFD causes cumulative damage to sperm. MATERIAL AND METHODS: Male C57BL/6 mice were fed a normal diet (the ND group) or a HFD (the HFD group) for 16, 30 or 42 weeks (n = 6 for each group). Body weight, lipid profile, sperm parameters, testicular morphology, and testicular oxidative stress levels were evaluated alongside the proliferation, DNA damage and rate of germ cell apoptosis. RESULTS: Sperm quality was reduced in HFD-fed animals in a time-dependent manner, which was demonstrated by a decline in sperm density, motility and progressive motility. Further analysis showed a progressive deterioration of the testicular histoarchitecture of HFD-fed mice, which was accompanied by a decrease in DEAD-box helicase 4 (DDX4) expression and superoxide dismutase (SOD) levels, increased malondialdehyde (MDA) levels and gamma-H2A histone family member X (γ-H2AX) expression, and increased apoptosis of germ cells. CONCLUSIONS: These findings demonstrate that a HFD exerted adverse effects on sperm quality, and the deteriorating effect was progressive with long-term feeding. The inhibited proliferation and apoptosis of germ cells, and the increased oxidative stress levels and DNA damage may be the underlying mechanisms.


Assuntos
Dieta Hiperlipídica , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Sêmen , Espermatozoides , Testículo , Estresse Oxidativo
10.
Genes (Basel) ; 13(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36553508

RESUMO

Small heat shock proteins (HSP20s) are a significant factor in plant growth and development in response to abiotic stress. In this study, we investigated the role of HSP20s' response to the heat stress of Sorbus pohuashanensis introduced into low-altitude areas. The HSP20 gene family was identified based on the genome-wide data of S. pohuashanensis, and the expression patterns of tissue specificity and the response to abiotic stresses were evaluated. Finally, we identified 38 HSP20 genes that were distributed on 16 chromosomes. Phylogenetic analysis of HSP20s showed that the closest genetic relationship to S. pohuashanensis (SpHSP20s) is Malus domestica, followed by Populus trichocarpa and Arabidopsis thaliana. According to phylogenetic analysis and subcellular localization prediction, the 38 SpHSP20s belonged to 10 subfamilies. Analysis of the gene structure and conserved motifs indicated that HSP20 gene family members are relatively conserved. Synteny analysis showed that the expansion of the SpHSP20 gene family was mainly caused by segmental duplication. In addition, many cis-acting elements connected with growth and development, hormones, and stress responsiveness were found in the SpHSP20 promoter region. Analysis of expression patterns showed that these genes were closely related to high temperature, drought, salt, growth, and developmental processes. These results provide information and a theoretical basis for the exploration of HSP20 gene family resources, as well as the domestication and genetic improvement of S. pohuashanensis.


Assuntos
Proteínas de Choque Térmico , Sorbus , Proteínas de Choque Térmico/genética , Sorbus/genética , Filogenia , Estresse Fisiológico/genética , Genoma de Planta
11.
Front Plant Sci ; 13: 1045194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340389

RESUMO

Jasmine [Jasminum sambac (L.) Aiton] is a commercially important cultivated plant species known for its fragrant flowers used in the perfume industry, medicine and cosmetics. In the present study, we obtained a draft genome for the J. sambac cultivar 'Danbanmoli' (JSDB, a single-petal phenotype). We showed that the final genome of J. sambac was 520.80 Mb in size (contig N50 = 145.43 kb; scaffold N50 = 145.53 kb) and comprised 35,363 genes. Our analyses revealed that the J. sambac genome has undergone only an ancient whole-genome duplication (WGD) event. We estimated that the lineage that has given rise to J. sambac diverged from the lineage leading to Osmanthus fragrans and Olea europaea approximately 31.1 million years ago (Mya). On the basis of a combination of genomic and transcriptomic analyses, we identified 92 transcription factors (TFs) and 206 genes related to heat stress response. Base on a combination of genomic, transcriptomic and metabolomic analyses, a range of aroma compounds and genes involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways were identified. In the newly assembled J. sambac genome, we identified a total of 122 MYB, 122 bHLH and 69 WRKY genes. Our assembled J. sambac JSDB genome provides fundamental knowledge to study the molecular mechanism of heat stress tolerance, and improve jasmine flowers and dissect its fragrance.

12.
BMC Plant Biol ; 22(1): 345, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842592

RESUMO

BACKGROUND: Hydrangea macrophylla var. Maculata 'Yinbianxiuqiu' (YB) is an excellent plant species with beautiful flowers and leaves with silvery white edges. However, there are few reports on its leaf color characteristics and color formation mechanism. RESULTS: The present study compared the phenotypic, physiological and transcriptomic differences between YB and a full-green leaf mutant (YM) obtained from YB. The results showed that YB and YM had similar genetic backgrounds, but photosynthesis was reduced in YB. The contents of pigments were significantly decreased at the edges of YB leaves compared to YM leaves. The ultrastructure of chloroplasts in the YB leaves was irregular. Transcriptome profiling identified 7,023 differentially expressed genes between YB and YM. The expression levels of genes involved in photosynthesis, chloroplast development and division were different between YB and YM. Quantitative real-time PCR showed that the expression trends were generally consistent with the transcriptome data. CONCLUSIONS: Taken together, the formation of the silvery white leaf color of H. macrophylla var. maculata was primarily due to the abnormal development of chloroplasts. This study facilitates the molecular function analysis of key genes involved in chloroplast development and provides new insights into the molecular mechanisms involved in leaf coloration in H. macrophylla.


Assuntos
Hydrangea , Clorofila/metabolismo , Cloroplastos/metabolismo , Cor , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Hydrangea/genética , Hydrangea/metabolismo , Fisiologia Comparada , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
13.
PeerJ ; 10: e13620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769137

RESUMO

Hydrangea (Hydrangea macrophylla (Thunb.) Ser.) is a famous ornamental plant species with high resistance to aluminum (Al). The aluminum-activated malate transporter (ALMT) family encodes anion channels, which participate in many physiological processes, such as Al tolerance, pH regulation, stomatal movement, and mineral nutrition. However, systematic studies on the gene family have not been reported in hydrangea. In this study, 11 candidate ALMT family members were identified from the transcriptome data for hydrangea, which could be divided into three clusters according to the phylogenetic tree. The protein physicochemical properties, phylogeny, conserved motifs and protein structure were analyzed. The distribution of base conservative motifs of HmALMTs was consistent with that of other species, with a highly conserved WEP motif. Furthermore, tissue-specific analysis showed that most of the HmALMTs were highly expressed in the stem under Al treatment. In addition, overexpression of HmALMT5, HmALMT9 and HmALMT11 in yeasts enhanced their tolerance to Al stress. Therefore, the above results reveal the functional role of HmALMTs underlying the Al tolerance of hydrangea. The present study provides a reference for further research to elucidate the functional mechanism and expression regulation of the ALMT gene family in hydrangea.


Assuntos
Alumínio , Hydrangea , Alumínio/química , Hydrangea/metabolismo , Malatos/metabolismo , Filogenia , Proteínas de Membrana Transportadoras/metabolismo
14.
Plant Physiol Biochem ; 185: 268-278, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724621

RESUMO

Hydrangea [Hydrangea macrophylla (Thunb.) Ser.] is a high aluminum-tolerant ornamental plant species, which has a specific characteristic of color change, ie. some cultivars' floral color will change from red to blue or blue-violet planted in acidic soil containing aluminum. This study aims to understand the complex molecular mechanisms of floral color change under Al stress, through comparative biochemistry and transcriptome analyses between an Al3+-sensitive cultivar 'Bailer' and insensitive cultivar 'Ruby' under Al-stress. The results of biochemistry analysis showed that 'Bailer' displayed higher contents of Al3+ and delphinium-3-O-glucoside than that of 'Ruby' after Al2(SO4)3 treating. Meanwhile, the transcriptome analysis of different tissues identified 12,321 differentially expressed genes (DEGs) in 'Bailer' and 6,703 in 'Ruby'. Transcriptome analysis showed that changes in genes' expression pattern in several genes and pathways [such as including metal transporters, reactive oxygen species (ROS) scavenging enzyme, plant hormone signal transduction and favonoid biosynthesis pathway] were the key contributors to the Al3+-sensitive cultivar 'Bailer'. Besides, gene co-expression network analysis (WGCNA) demonstrated that five hub genes, including ABC transporters (TRINITY_DN1053_c0_g1, TRINITY_DN3377_c0_g2), cationic amino acid transporter (TRINITY_DN9684_c0_g2), oligopeptide transporter (TRINITY_DN1147_c0_g2) and flavonol synthase (TRINITY_DN15902_c0_g1), played vital roles in the networks regulating Al tolerance in hydrangea. Furthermore, HmABCI17's (TRINITY_DN1053_c0_g1) expression enhanced Al tolerance in yeast. The conclusions of this study are helpful to elucidate the differences and molecular mechanisms of different hydrangea cultivars on Al tolerance, and provide new insights into molecular assisted-screening for breeding blue flowers in hydrangea and other ornamental plants.


Assuntos
Hydrangea , Alumínio/análise , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hydrangea/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Melhoramento Vegetal , Transcriptoma/genética
15.
Front Endocrinol (Lausanne) ; 13: 839034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518932

RESUMO

Background: Obesity is associated with a decrease in testicular function, yet the effects and mechanisms relative to different stages of sexual development remain unclear. The aim of this study is to determine whether high-fat diet-induced obesity impairs male fertility during puberty and in adulthood, and to ascertain its underlying mechanisms. This study aims to further reveal whether restoring to a normal diet can improve impaired fertility. Methods: Male mice were divided into 6 groups: the group N and H exposed to a normal diet or high-fat diet during puberty. The group NN or NH were further maintained a normal diet or exposed to high-fat diet in adulthood, the group HH or HN were further maintained high-fat diet or switched to normal diet in adulthood. Metabolic parameters, fertility parameters, testicular function parameters, TUNEL staining and testicular function-related proteins were evaluated, respectively. Results: The fertility of the mice in the high-fat diet group was impaired, which validated by declines in pregnancy rates and litter weight loss. Further analysis demonstrated the increased level of oxidative stress, the increased number of spermatogenic cell apoptosis and decreased number of sperm and decreased acrosome integrity. The expression of steroidogenic acute regulatory (StAR) and spermatogenesis related proteins (WT-1) decreased. Fertility among the HN group recovered, accompanied by the recovery of metabolism, fertility and testicular function parameters, StAR and WT-1 expression. Conclusions: The findings suggest that high-fat diet-induced obesity impairs male fertility during puberty and in adulthood. The loss of acrosome integrity, the increase of oxidative stress, the increase of cells apoptosis and the down-regulation of StAR and WT-1 may be the underlying mechanisms. Switching from high-fat diets during puberty to normal diets in adulthood can improve male fertility.


Assuntos
Dieta Hiperlipídica , Maturidade Sexual , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Fertilidade , Masculino , Camundongos , Camundongos Obesos , Obesidade/complicações , Gravidez
16.
Front Endocrinol (Lausanne) ; 13: 836485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399957

RESUMO

Objective: This study aimed at investigating the association between testosterone levels and gut microbiota in male patients with type 2 diabetes mellitus (T2DM) and providing a new strategy to elucidate the pathological mechanism of testosterone deficiency in T2DM patients. Methods: In an observational study including 46 T2DM male patients, the peripheral venous blood and fecal samples of all subjects were collected. The V3-V4 regions of bacterial 16S rDNA were amplified and sequenced. Alpha and beta diversities were calculated by QIIME software. The possible association between gut microbial community and clinical indicators was assessed using the Spearman correlation coefficient. The association between the relative abundance of bacteria and testosterone levels was discovered using linear regression analysis in R language. Results: There was no substantial difference in alpha and beta diversity. Blautia and Lachnospirales were significantly much higher in the testosterone deficiency group. Linear regression analysis showed that the abundance of Firmicutes at the phylum level and Lachnospirales at the order level were negatively correlated with testosterone level. After correcting for C-reactive protein (CRP) and homeostatic model assessment of insulin resistance (HOMA-IR), the relative abundance of Lachnospirales still had a significant negative correlation with testosterone level. Meanwhile, at the genus level, Lachnoclostridium, Blautia, and Bergeyella had a statistically significant negative association with testosterone level, respectively. Blautia was positively associated with FPG and total cholesterol level. Streptococcus was found positively associated with insulin, connecting peptide, and index of homeostatic model assessment of insulin resistance. Conclusion: T2DM patients with testosterone deficiency have different gut microbiota compositions compared with T2DM patients alone. Low serum testosterone patients tend to have an increased abundance of opportunistic pathogens, which may be related to the occurrence and development of testosterone deficiency.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Microbiota , Diabetes Mellitus Tipo 2/complicações , Humanos , Masculino , Testosterona
17.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406918

RESUMO

Plant-specific TCP transcription factors play a key role in plant development and stress responses. Chrysanthemum nankingense shows higher cold tolerance than its ornamental polyploid counterpart. However, whether the TCP gene family plays a role in conferring cold tolerance upon C. nankingense remains unknown. Here, we identified 23 CnTCP genes in C. nankingense, systematically analyzed their phylogenetic relationships and synteny with TCPs from other species, and evaluated their expression profiles at low temperature. Phylogenetic analysis of the protein sequences suggested that CnTCP proteins fall into two classes and three clades, with a typical bHLH domain. However, differences between C. nankingense and Arabidopsis in predicted protein structure and binding sites suggested a unique function of CnTCPs in C. nankingense. Furthermore, expression profiles showed that expression of most CnTCPs were downregulated under cold conditions, suggesting their importance in plant responses to cold stress. Notably, expression of miR319 and of its predicted target genes, CnTCP2/4/14, led to fast responses to cold. Overexpression of Arabidopsis CnTCP4 led to hypersensitivity to cold, suggesting that CnTCP4 might play a negative role in C. nankingense responses to cold stress. Our results provide a foundation for future functional genomic studies on this gene family in chrysanthemum.

18.
ACS Appl Mater Interfaces ; 14(6): 7659-7670, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119836

RESUMO

Herein, we developed a novel transferrin protein corona (Tpc)-modified CuGd nanoplatform (Tpc-CuGd) for tumor-targeting photothermal (PT) and chemodynamic synergistic therapy. In addition, Tpc-CuGd had an ultrahigh PT conversion efficiency (∼55.6%) and excellent PT stability. By the calculation, the Fenton-catalytic activity of Tpc-CuGd was approximately 13.6 times that of classical ultrasmall iron oxide, endowing strong chemodynamic therapy ability in the tumor. Upon internalization of Tpc-CuGd nanoparticles (NPs), an abundance of Cu(II) was released from Tpc-CuGd and then was quickly reduced to high Fenton-catalytic activity of Cu(I) by elemental copper and cellular GSH. Next, the generated Cu(I) quickly catalyzed H2O2 into highly toxic •OH, causing mitochondria damage and inducing cancer cell death. In addition, the systemic delivery of Tpc-CuGd significantly inhibited tumor growth and showed a very low toxicity. Notably, the PT effect of Tpc-CuGd NPs not only promoted their tumor inhibitory capability but also significantly restricted the continued growth of the tumor after the discontinuation of the treatment. In addition, Tpc-CuGd significantly strengthened the T1-weighted signal of tumors and realized accurate cancer diagnosis. Therefore, this nanoplatform could be a great promising candidate for PT and chemodynamic synergistic theranostics.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Transferrina
19.
Plant Physiol Biochem ; 175: 68-80, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35180530

RESUMO

Heat shock transcription factors (Hsfs) are essential regulators of plant responses to abiotic stresses, growth, and development. However, all the Hsf family members have not been identified in Sorbus pohuashanensis. Therefore, the aim of this study was to identify the Hsf family members in S. pohuashanensis and examine their expression under abiotic stress conditions through the integration of gene structure, phylogenetic relationships, chromosome location, and expression patterns. Bioinformatics-based methods, identified 33 Hsfs in S. pohuashanensis. Phylogenetic analysis of Hsfs from S. pohuashanensis and other species revealed that they were more closely related to apples and white pears, followed by Populus trichocarpa, and most distantly related to Arabidopsis. Moreover, the Hsfs were clustered into three major groups: A, B, and C. Gene structure and conserved motif analysis revealed a high degree of conservation among members of the same class. Collinearity analysis revealed that segmental duplication played an essential role in increasing the size of the SpHsfs gene family in S. pohuashanensis. Additionally, several cis-acting elements associated with growth and development, hormone response, and stress were found in the promoter region of SpHsfs genes. Furthermore, expression analysis in various tissues of S. pohuashanensis showed that the genes were closely associated with heat, drought, salt stress, growth, and developmental processes. Overall, these results provide valuable information on the evolutionary relationships of the Hsf gene family. These genes stand as strong functional candidates for further studies on the resistance of S. pohuashanensis to abiotic stresses.

20.
Mater Horiz ; 8(3): 1017-1028, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821332

RESUMO

Theoretically, the Fenton catalytic efficiency of the Cu-based nanoplatform is approximately 160 times that of traditional Fe-based agents. However, the coordination interaction between Cu(ii) and intracellular GSH significantly inhibits the high catalytic activity of Cu(i) generation, dramatically decreasing the Fenton-like catalytic efficiency. Herein, we designed a completely new and highly efficient hierarchical structural nanoplatform to enhance the mimic-peroxidase activity through utilizing comproportionation between CuO and elemental Cu core to self-supply Cu(i). The catalytic rate of this nanoplatform was approximately 55-fold that of traditional Fe-based agents. In a cell assay, this nanoplatform could function as an antagonist of GPX4 and agonist of SOD-1, resulting in intracellular ROS and H2O2 accumulation. Next, the accumulated H2O2 could be quickly catalyzed to highly toxic ˙OH by self-supplying Cu(i), causing strong oxidative stress damage to mitochondria and cell membranes. Under 808 nm laser irradiation, this nanoplatform exhibited a stronger inhibition of tumor growth, and effectively overcame the tumor resistance and recurrence. In addition, this hierarchical structure significantly promoted the interaction between water molecules and gadolinium centers, making TRF-mCuGd possess an ultrahigh T1 MRI contrast performance, and hence, more pathological information of the tumor could be achieved. Overall, this work provides a promising pattern for the design and development of cancer theranostics.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Linhagem Celular Tumoral , Cobre , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...